Edge computation in human vision: anisotropy in the combining of oriented filters.
نویسندگان
چکیده
Above threshold, two superimposed sinusoidal gratings of the same spatial frequency (eg 1 cycle deg-1) and equal contrasts, and with orientations balanced around vertical, usually look like a compound structure containing vertical and horizontal edges. However, at large plaid angles (ie large differences between component orientations) and low plaid contrasts there is a tendency for the stimulus to appear as two overlapping gratings (component structure) with obliquely oriented edges. These dependencies of perceived spatial structure in plaids are incompatible with an edge-coding scheme that uses only circular filters to compute zero-crossings, but instead support the idea that different oriented filters can (compound percept) or cannot (component percept) be combined before edges are represented. Here, further evidence is presented in support of this hypothesis. Two-component plaid stimuli had plaid angles of 45 degrees or 90 degrees, and a range of plaid orientations (ie a range of orientations around which the plaid components were balanced). Observers indicated whether each stimulus was perceived as a compound or component structure for a range of plaid contrasts. In addition to angle and contrast effects, perceived spatial structure was also found to depend on plaid orientation: compound structures were perceived more often when the plaid components were balanced around the cardinal axes of the retina. It is suggested that the principles governing the combination of oriented-filter outputs might be learnt during the development of the visual system by using a Hebb-type rule: coactivated filters are more likely to combine their outputs when activated on future occasions. Given the prominence of vertical and horizontal orientations in a carpentered environment, this simple rule promotes a network that combines filters balanced around cardinal axes more readily than oblique axes, in agreement with the results.
منابع مشابه
Edge and line oriented contour detection: State of the art
a r t i c l e i n f o We present an overview of various edge and line oriented approaches to contour detection that have been proposed in the last two decades. By edge and line oriented we mean methods that do not rely on segmentation. Distinction is made between edges and contours. Contour detectors are divided in local and global operators. The former are mainly based on differential analysis...
متن کاملPerception of stationary plaids: The role of spatial filters in edge analysis
Orientation-tuned spatial filters in visual cortex are widely held to act as "orientation detectors", but our experiments on the perception of stationary two-dimensional (2-D) plaids require a new view. When two sinusoidal gratings at different orientations (say 1 c/deg, +/- 45 deg from vertical) are superimposed to form a standard plaid they do not, in general, look like two sets of oblique co...
متن کاملEdge detection in gravity field of the Gheshm sedimentary basin
Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (H...
متن کاملComputing local edge probability in natural scenes from a population of oriented simple cells.
A key computation in visual cortex is the extraction of object contours, where the first stage of processing is commonly attributed to V1 simple cells. The standard model of a simple cell-an oriented linear filter followed by a divisive normalization-fits a wide variety of physiological data, but is a poor performing local edge detector when applied to natural images. The brain's ability to fin...
متن کاملLearning Optimal Linear Filters for Early Vision
Edge detection is important both for its practical applications to computer vision as well as its relationship to early processing in the visual cortex. We describe experiments in which the rescaling backpropagalion learning algorithm was used to learn sets of linear filters for the task of determining the orientation and location of edges to sub-pixel accuracy. A model of edge formation was us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Perception
دوره 24 6 شماره
صفحات -
تاریخ انتشار 1995